If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+17x=168
We move all terms to the left:
x^2+17x-(168)=0
a = 1; b = 17; c = -168;
Δ = b2-4ac
Δ = 172-4·1·(-168)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-31}{2*1}=\frac{-48}{2} =-24 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+31}{2*1}=\frac{14}{2} =7 $
| -1x-3=4x+17 | | 2b−1=7 | | 4+5t=-1 | | -1.9x-1.3=3.2 | | r2-3=-3 | | -13p+12p=-9 | | 4n-12n=64 | | -17+3a=-20 | | 0.6y+3y-1=219 | | 5.x=35 | | 3(t-9)=-6 | | 58=2(y+18) | | 27+2x=400 | | 2(r-3)+3=9 | | m/5-3=-4 | | 2/9=y/27 | | 5/d=8/24 | | y=30(300)-1500 | | x/2-15=10 | | -19=1+2r | | -5a-5=90 | | 4+3u=7 | | w/5+8=-7 | | m/10+8=7 | | -(-3+m=-4 | | p+8/4=-1 | | -8g=96 | | 146+5q=161 | | 4(v-11)=20 | | 4p+12=24 | | 7+10v=-63 | | -14q-1=-19-13q |